O SISTEMA GRACELI TRANSSIMÉTRICO E TRANSRENORMALIZÁVEL  DEFINE QUE UMA  OU QUALQUER TIPO DE PARTÍCULA  OU FENÔMENO EM GERAL SE ENCONTRA EM TRANSSIMETRIA E TRANSRENORMALIZAÇÃO..

OU SEJA , ENTRA E SAI DE SIMETRIA E RENORMALIZAÇÃO  EM TERMOS DE INFINITÉSIMOS, ONDE UMA PARTE AUMENTA A SUA ENERGIA E ESTADOS QUÂNTICO E TOPOLÍGOCO [OU MESMO DIMENSÕES E ESTADOS QUÂNTICOS DE GRACELI [VER NA INTERNET], E OUTROS DIMENUEM, NISTO TEM UM PONTO CRÍTICO DE VALOR ENTRE AS PASSAGENS DE UM AUMENTO PARA UM DECRÉSCIMO, EM TERMOS INFINITÉSIMOS EM RELAÇÃO AO TEMPO, POTENCIAIS E INTENSIDADES DE ENERGIAS, E OUTROS.








  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  /  G* =  = [          ] ω           .





 / {+, - ] / EV/     
  /  G* =  = [          ] ω           .


 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .


 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .




 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .


 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .

 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .

 
 {+, - ] / EV/     
  /  G* =  = [          ] ω           .


Quebra espontânea de simetria é um processo pelo qual um sistema simétrico passa, de forma espontânea, para um estado não simétrico. Este tipo de processo, incomum na natureza física, é vital para a compreensão do modelo padrão das partículas fundamentais, que é um dos mais importantes ramos da física moderna.

Definição[editar | editar código-fonte]

Para que uma quebra espontânea de simetria ocorra, deve necessariamente haver um sistema no qual existam diversos estados subsequentes com iguais probabilidades de ocorrer. Este sistema, como um todo, então é tratado como um sistema simétrico. Entretanto apenas um dos estados subsequentes deve ocorrer e toda a probabilidade dos inúmeros estados diversos é reduzida a zero, já que não há mais simetria. Então, é dito que a simetria do sistema foi espontaneamente quebrada.

Definição formal[editar | editar código-fonte]

Quando uma teoria é dita simétrica com respeito à um grupo simétrico, mas afirma que um elemento deste grupo é distinto, então uma quebra espontânea de simetria ocorreu, ou seja, pela teoria, não é necessário que se identifique o elemento e sim apenas que haja um elemento distinto.

Importância no modelo padrão[editar | editar código-fonte]

Ver artigo principal: Mecanismo de Higgs

Sem a quebra espontânea de simetria o modelo padrão prediz a existência de um determinado número de partículas. Entretanto, algumas destas partículas (os bosões W e Z, por exemplo) são preditos de não possuir massa, quando na realidade eles possuem massa. Esta era a maior falha do modelo até que o físico escocês Peter Higgs e outros propuseram, através do que ficou conhecido por mecanismo de Higgs, o uso da quebra espontânea de simetria para comportar massa nestas partículas. O mecanismo por sua vez prediz a existência de uma nova partícula, o bosão de Higgs. O bosão/bóson de Higgs foi detectado no LHC do CERN em Julho de 2012, com probabilidade maior que 5 sigmas de ser verdadeira tal identificação.

Uso na matemática[editar | editar código-fonte]

Gráfico conhecido por função potencial do chapéu mexicano.

Na matemática o uso mais comum da quebra espontânea de simetria é pelo uso da Função de Lagrange, a qual essencialmente indica como um sistema irá se comportar por meio de termos potenciais

É neste termo potencial  que a ação da quebra de simetria ocorre. Como demonstra o gráfico do chapéu mexicano

Este termo potencial possui vários possíveis mínimos dados por

para qualquer real no intervalo . Este sistema também possui um estado do vácuo quântico que corresponde ao , este estado possui um grupo unitário simétrico. Entretanto, uma vez que o sistema atinja um estado específico no vácuo (que corresponda a um valor para ) a simetria será espontaneamente quebrada.





renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]

Renormalização em EDQ[editar | editar código-fonte]

Em Lagrangeano de EDQ,

Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:

Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]




Um estado quântico é qualquer estado possível em que um sistema mecânico quântico possa se encontrar. Um estado quântico plenamente especificado pode ser descrito por um vetor de estado, por uma função de onda ou por um conjunto completo de números quânticos para um dado sistema. Vetores de estado quântico, na interpretação mais comum da mecânica quântica, não têm realidade física. O que tem significado físico são as probabilidades que podem ser calculadas a partir deles e não os vetores em si.[1] Ao estado quântico de menor energia possível dá-se o nome de estado quântico fundamental.

Na física quântica, o estado quântico se refere ao estado de um sistema isolado. Um estado quântico fornece uma distribuição de probabilidade para o valor de cada observável, ou seja, para o resultado de cada medida possível no sistema. O conhecimento do estado quântico juntamente com as regras para a evolução do sistema no tempo esgota tudo o que se pode prever sobre o comportamento do sistema.

Uma mistura de estados quânticos é novamente um estado quântico. Os estados quânticos que não podem ser escritos como uma mistura de outros estados são chamados estados quânticos puros, todos os outros estados são chamados de estados quânticos mistos.

Matematicamente, um estado quântico puro pode ser representado por um raio em um espaço de Hilbert sobre os números complexos.[2] O raio é um conjunto de vetores diferentes de zero diferindo apenas por um fator escalar complexo; qualquer um deles pode ser escolhido como um vetor de estado para representar o raio e, portanto, o estado. Um vetor unitário é normalmente escolhido, mas seu fator de fase pode ser escolhido livremente de qualquer maneira. No entanto, esses fatores são importantes quando vetores de estado são adicionados para formar uma superposição.

O espaço de Hilbert é uma generalização do espaço euclidiano comum[3] e contém todos os possíveis estados quânticos puros do sistema dado.[4] Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.

Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:

que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.

Um estado quântico misto corresponde a uma mistura probabilística de estados puros; no entanto, diferentes distribuições de estados puros podem gerar estados mistos equivalentes (isto é, fisicamente indistinguíveis). Os estados mistos são descritos pelas chamadas matrizes de densidade. Um estado puro também pode ser reformulado como uma matriz de densidade; desta forma, os estados puros podem ser representados como um subconjunto dos estados mistos mais gerais.

Por exemplo, se o spin de um elétron é medido em qualquer direção, por exemplo com um experimento de Stern-Gerlach, há dois resultados possíveis: para cima ou para baixo. O espaço de Hilbert para o spin do elétron é, portanto, bidimensional. Um estado puro aqui é representado por um vetor complexo bidimensional , com um comprimento de um; isto é, com

onde  e  são valores absolutos  e . Um estado misto, neste caso, tem a estrutura de uma matriz  isso é, hermitiano, positivo-definido, e tem o traço 1.

Antes que uma medição particular seja realizada em um sistema quântico, a teoria geralmente fornece apenas uma distribuição de probabilidade para o resultado, e a forma que essa distribuição assume é completamente determinada pelo estado quântico e pelo observável que descreve a medição. Essas distribuições de probabilidade surgem tanto para estados mistos quanto para estados puros: é impossível na mecânica quântica (ao contrário da mecânica clássica) preparar um estado no qual todas as propriedades do sistema sejam fixas e certas. Isso é exemplificado pelo princípio da incerteza e reflete uma diferença central entre a física clássica e a física quântica. Mesmo na teoria quântica, no entanto, para todo observável existem alguns estados que têm um valor exato e determinado para aquele observável.[3][5]

Comentários

Postagens mais visitadas deste blog